
TCP Congestion Control
65KB

SS SS CASS
1

W

×0.5 ×0.5 ×0.5 ×0.5
3 3

TO TO3DA 3DA

CA

Telecom Systems
Chae Y. Lee

2

TCP’s Congestion Window Maintenance

TCP maintains a congestion window (cwnd), based
on packets

Sender’s window is limited to
MIN(receiver’s window, cwnd)

Maintenance policy:
On congestion signal, multiplicative decrease
On success, additive increase

Additive increase/multiplicative decrease produces
stability

Telecom Systems
Chae Y. Lee

3

Window Increase/Decrease

TCP Congestion Avoidance:
Use packet loss as indicator of congestion
On loss, divide cwnd by 2
On successful ACK, increase cwnd by 1/cwnd

Results in window growth of 1 packet for each
window’s worth of ACKs [near linear]

Telecom Systems
Chae Y. Lee

4

TCP Congestion Avoidance

cwnd

Time

Loss Events

~Linear Growth

Telecom Systems
Chae Y. Lee

5

TCP Congestion Avoidance

Increase by 1
packet per window

Increase by 1
packet per window

Time

Sender Receiver

Telecom Systems
Chae Y. Lee

6

Congestion Avoidance

TCP Congestion Avoidance makes sense when the
connection is operating near capacity (in steady-
state, but searching for any capacity change)

What about when a connection starts up, or there has
been a long pause?

Need a way to get to equilibrium

Telecom Systems
Chae Y. Lee

7

TCP Slow Start

Slow-start is a TCP behavior used to get to packet
equilibrium

Slow-start increases the congestion window
exponentially, rather than linearly

Why called “slow-start” then?
It is considerably slower than the start based only on the

receiver’s advertised window

Telecom Systems
Chae Y. Lee

8

TCP Slow Start

For each ACK received, increase the congestion
window by 1

Results in cwnd pattern of: 1, 2, 4, 8, 16, 32, …
Takes time proportional to log2 W to reach window of W,

[longer if ACKs delayed]

Telecom Systems
Chae Y. Lee

9

TCP Slow Start

cwnd

Number of RTTs

Telecom Systems
Chae Y. Lee

10

TCP Slow Start

Increase by 1
packet per ACK

Time

Sender Receiver

Telecom Systems
Chae Y. Lee

11

TCP Congestion Behaviors

Two algorithms:
Slow-start: getting to equilibrium
Congestion avoidance: searching for new available

bandwidth in path (and reacting to congestion)

The two behaviors are mutually exclusive for any
single point in time, but each TCP implements both:

Establish an operating point to switch between the two
algorithms (ssthresh)

Telecom Systems
Chae Y. Lee

12

Slow-Start Threshold (ssthresh)

Need a way to determine whether the TCP should do
slow-start or congestion avoidance

New variable (ssthresh):
if cwnd  ssthresh, do slow-start
if cwnd > ssthresh, do congestion avoidance

ssthresh is initialized to a large value, after a
congestion signal, cwnd is divided in half, and
ssthresh is set to cwnd

(can lead to overshoot at start of connection)

Telecom Systems
Chae Y. Lee

13

TCP Slow-Start and Congestion Avoidance

cwnd

Number of RTTs

ssthresh

SS Region

CA Region

Telecom Systems
Chae Y. Lee

14

ssthresh and cwnd maintenance

Congestion window is normally updated on
congestion indications (packet drops), and grows
linearly if above ssthresh

ssthresh is reset to cwnd after it is reduced to keep a
marker of the last operating point

When does the TCP ever enter slow-start after a
connection has started? (hint: if we are doing very
badly)

Telecom Systems
Chae Y. Lee

15

Detecting Loss with TCP

TCP uses lost packets as indicators of congestion
Two methods

Timer expiring
Fast retransmit

Fast retransmit:
Because of cumulative ACK, out-of-order data received

at receiver may generate duplicate ACKs (“dupacks”)

Telecom Systems
Chae Y. Lee

16

Duplicate ACKs

To arrange out-of-order segments, TCP responds
immediately with one ACK per packet:

Receiver gets: 5, 6, 7, 8, 10, 11, 12, 13
ACKs: 6, 7, 8, 9, 9, 9, 9, 9 [4 dupacks]
Actual Sequence_Num and Ack_Num are discrete due

to the byte stream
Provides a hint to sender that packet 9 is probably missing at

receiver and that 4 packets have arrived after 8 arrived
[think about retransmit!]

Telecom Systems
Chae Y. Lee

17

Fast Retransmit

Heuristic at sender to trigger retransmissions without
timeouts

To avoid timeout due to delayed packet, look for 3
dupacks

So, on 3rd dupack for packet n, retransmit n, and
send more if send window allows

If only one packet lost, fills receiver’s “hole”,
resulting in cumulative ACK for top of window

Telecom Systems
Chae Y. Lee

18

Fast Retransmit Example

Time

Sender Receiver

tx 2…6

3 is lost
ACK 3

ACK 3
Retx 3

ACK 8

tx 7

tx 8

Telecom Systems
Chae Y. Lee

19

TCP Ack and Fast Retransmissions

Transmit Site at
Launch Time

Receive Site
Some Seconds Later

Telecom Systems
Chae Y. Lee

20

Fast RTX Observations

Fast retransmit can repair modest packet loss without
requiring a retransmission timer to expire

Because it requires 3 dupacks to fire, doesn’t work
so well with small windows (because there won’t
be enough ACKs generated at the receiver)

With large numbers of dropped packets, similar
problem (not enough ACKs)

Telecom Systems
Chae Y. Lee

21

Congestion Action on Loss

TCP has different behaviors, depending on the way it
detects loss (RFC2581)

RTX timer expires:
ssthresh = MAX(MIN(win,cwnd)/2, 2)
cwnd = 1 [or other IW] (initiates slow-start)

Fast retransmit (fast recovery):
ssthresh = MAX(MIN(win,cwnd)/2, 2)
cwnd = ssthresh + 3

each additional dupack increments cwnd by 1
fast recovery

cwnd = ssthresh on new ACK

Telecom Systems
Chae Y. Lee

22

Refinements: Summary

Actual window = min{RAW - OUT, W}
where Out = Last sent - Last ACKed

SS SS CASS
1

W

×0.5 ×0.5 ×0.5 ×0.5
3 3

TO TO3DA 3DA

CA

65KB

Telecom Systems
Chae Y. Lee

23

Summary: TCP Congestion Behavior

Slow-start:
When: new connection, after idle time, after RTX timer

expires
How: set cwnd=1, grow window exponentially
Why: searches quickly for operating point

Congestion avoidance:
When: normal operations, fast RTX/recovery
How: divide operating point in 1/2 after loss
Why: searches slowly for new bandwidth

